
Visualizing and Editing Ontology Fragments with
OWLGrEd

Renars Liepins∗*, Karlis Cerans∗, Arturs Sprogis**

Institute of Mathematics and Computer Science, University of Latvia

{ Renars.Liepins, Karlis.Cerans, Arturs.Sprogis}@lumii.lv

Abstract. The OWLGrEd ontology editor allows graphical visualization and
authoring of OWL 2.0 ontologies using a compact yet intuitive presentation that
combines UML class diagram notation with textual Manchester syntax for class
expressions. Here we show, how to integrate OWLGrEd with ontology module
mechanism from OWL API to obtain on-demand ontology fragment
visualization that is essential for many existing large ontologies that do not fit
in a single reasonably perceivable UML class diagram.

Keywords: OWL ontologies, visualization, UML/OWL profile, OWLGrEd,
ontology decomposition, ontology modules

1 Introduction

Intuitive ontology visualization is a key for their learning, exchange, as well as their
use in conceptual modeling and semantic database schema design. A number of tools
and approaches exist for rendering and/or editing OWL [1] ontologies in a graphical
form, including UML Profile for OWL DL [2], ODM [3], TopBraid Composer [4],
Protégé [5] plug-in OWLViz [6] and OWLGrEd [7,8]. The approaches of [2,3,7,8]
use UML [9] class diagrams to visualize OWL ontologies. This is achieved by
visualizing an independent hierarchy of ontology classes and then structuring the data
and object property visualizations along the property domain and range classes. The
OWL ontology constructions not having direct UML counterparts (e.g. class expressi-
ons, properties with more than one domain assertion, sub-property relations etc.) are
usually handled by some auxiliary means in the notation and the editor. OWLGrEd
uses textual OWL Manchester syntax [10] for class expressions where the graphical
notation is not available or is not desired thus allowing compact and comprehensible
presentation of up to medium-sized ontologies within a single diagram.

The main focus of this demo is on using the compact UML-style notation, offered
by OWLGrEd, on large ontologies that do not fit within any reasonably-sized class
diagram, or whose rendering appears to be too complicated due to a kind of “spider
web” effect produced by many classes and relations. Its key idea consists in splitting
the ontology into meaningful fragments of conceivable size and then visualizing each
of the fragments in a separate diagram .

** Partially supported by Latvian 2010.-2013. National Research Program Nr.2 project Nr.5.
* Partially supported by European Union via European Regional Development Fund project

2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.

OWLGrEd already has the means to partition ontology into sub-diagrams
(fragments) when authoring or reengineering an existing ontology. But there was no
way to automatically partition an ontology that is imported into OWLGrEd for
visualization. In this demo we will present an extension to OWLGrEd visualization
capabilities, that allows automatic partitioning of an ontology into logical fragments.
The addition is based on Automatic Decomposition [11] that was recently
implemented in the OWL API1. The decomposition is based on signatures, i.e. for
each fragment a user selects some entities that should be included in the fragment.
Then the fragment is extended with all the logically relevant axioms for these entities.
Finally all the fragments are rendered graphically in the OWLGrEd editor.

The demonstration shows (i) working with OWLGrEd tool to render and author
OWL ontologies (ii) OWLGrEd extension to automatically partition ontology into
logical overlapping fragments based on fragment signatures.

2 OWLGrEd Notation and Editor

OWLGrEd1 provides a complete graphical notation for OWL 2 [1], based on UML
class diagrams. We visualize OWL classes as UML classes, data properties as class
attributes, object properties as associations, individuals as objects and cardinality
restrictions on association domain class as UML cardinalities. It is easy to visualize
also subclass and inverse properties notations. For the full OWL 2 construct coverage
we enrich the UML class diagrams with the new extension notations, e.g. (cf. [7,8]):

• fields in classes for equivalent class, superclass and disjoint class
expressions written in Manchester OWL syntax [10];

• fields in associations and attributes for equivalent, disjoint and super
properties and fields for property characteristics, e.g., functional, transitive, etc.;

• anonymous classes containing equivalent class expression but no name (we
show graphically only anonymous classes that need to have graphic representation
in order to be able to describe other ontology concepts in the diagram);

• connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms;
• boxes with connectors for n-ary disjoint, equivalent, etc. axioms;
• connectors (lines) for visualizing object property restrictions some, only,

exactly, as well as cardinality restrictions.
OWLGrEd provides option to specify class expressions in compact textual form

rather than using separate graphical element for each logical item within class
expression. If an expression is referenced in multiple places, it can optionally be
shown as an anonymous class. An anonymous class is also used as a base for property
domain/range specification, if this domain/range is not a named class.

Figure 1 illustrates some basic OWLGrEd constructs on a simple mini-University
ontology, including different notation options for EquivalentClasses assertion, object
property restriction and a comment. The notation is explained in more detail in [7].

1 http://owlapi.sourceforge.net
2 http://owlgred.lumii.lv/

Fig. 1. Example: OWLGrEd notation for a mini-University ontology

The OWGrEd editor offers ontology interoperability (import/export) functionality
with the Protégé 4.2 ontology editor [5]. The principal OWLGrEd usage ways are:

- ontology authoring (create and edit an ontology in OWLGrEd, then export it to
Protégé to analyze and possibly submit it to other ontology processing tools)

- ontology visualization (an ontology that is imported from Protégé is displayed
graphically to obtain a comprehensible visual view on it).

3 Visualizing Fragments of Ontology

The graphical form is ideal for understanding small ontologies, but for large
ontologies it fast becomes overwhelming because of too many line crossings. For
visualization of the ontology in the form of fragments an issue is to describe the
fragments to be visualized since manual enumeration of all axioms to be included into
a fragment would clearly be infeasible. Recently there has been work on signature-
based automatic decomposition [11] of ontologies that allows specify ontology
modules just in terms of their “core” terms/entities. The decomposition then finds all
the axioms that are logically relevant for the given entities.

We have extended OWLGrEd editor with the Automatic Decomposition feature. A
user can specify either a single ontology fragment, or a list of fragments covering the
whole ontology that is to be visualized. The automatic decomposition then finds all
the relevant axioms for each specified fragment thus allowing OWLGrEd showing the
fragments visually in a graphical form.

As an example consider the schema.org ontology. It consists of about 300 classes,
110 object properties, 70 data properties and 310 subclass assertions. The ontology is
clearly too large to be easily perceived as a single diagram. However, it would be
feasible as well as meaningful to visualize fragments of the. For example, in the
Figure 2 is shown a fragment that is centered on entities “Event”, “Product” and
“Person”. Once the user has specified such an entity list, the tool automatically finds
the relevant axioms for these entities and then shows this fragment graphically. It is
possible to specify any number of such fragment signatures at a time and the tool will
create visualization for each of them.

AcademicProgram
programName:string{<name}

Course
courseName:string
{<name}

Thing{owl}
name:string{func} Person

"All persons, including teachers
and students"
key = personID
personName:string{<name}
personID:string[1]

Teacher

Student

{disjoint}

AcademicStaff
=Teacher

Professor

MandatoryCoursePermanentTeaching Staff
<teaches some MandatoryCourse

<<equivalent>>

<<Comment>>
"All persons,
including teachers
and students"

belongsTo

includes

takes {<relates} 1..10isTakenBy

relates

teaches {<relates} {<>takes}isTaughtBy

<<disjoint>>

teaches some [1..*]

enrolled {>takes o
belongsTo}

The experiments we have performed allows us to judge that the offered approach
of combining of the traditional OWLGrEd ontology visualization means with
ontology decomposition techniques would be a useful tool for the semantic
technology community in ontology schema structure representation.

Fig. 2. Automatically extracted fragment of schema.org ontology based on a

signature “Event, Product, Person”.

References

1. Motik, B; Patel-Schneider P.F; Parsia B.: OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax, 2009

2. Brockmans, S., Volz, R., Eberhart, A., Löffler, P. Visual Modeling of OWL DL Ontologies
Using UML, Proc. of ISWC 2004, LNCS 3298, pp. 198-213, 2004.

3. ODM UML profile for OWL, http://www.omg.org/spec/ODM/1.0/PDF/
4. TopBraid Composer, http://www.topquadrant.com/products/TB_Composer.html.
5. Protégé 4, http://protege.stanford.edu/
6. OWL Viz, http://www.co-ode.org/downloads/owlviz/
7. Barzdins, J.; Barzdins, G.; Cerans, K.; Liepins, R.; Sprogis, A.: OWLGrEd: a UML Style

Graphical Notation and Editor for OWL 2. In Proc. of OWLED 2010, 2010.
8. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A.: UML Style Graphical Notation and Editor

for OWL 2. In Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, p. 102-113, 2010.
9. Unified Modeling Language: Infrastructure, version 2.1. OMG Specification ptc/06-04-03,

http://www.omg.org/docs/ptc/06-04-03.pdf
10. OWL 2 Manchester Syntax, http://www.w3.org/TR/owl2-manchester-syntax/
11.Klinov, P.; Vescovo, C.; Schneider, T.: Incrementally Updateable and Persistent

Decomposition of OWL Ontologies. In Proc of OWLED 2012.

SportsEvent

EducationEvent

BusinessEvent

Thing{owl}

UserCheckins

UserLikes

FoodEvent

MusicEvent

UserTweets

SocialEvent

ComedyEvent

ChildrensEvent

VisualArtsEvent

Event
endDate
startDate

UserBlocks

Product
model
productID

Person
gender
birthDate
jobTitle
deathDate

UserDownloads

UserPageVisits

UserPlays

SaleEvent

UserPlusOnes

UserComments

Festival

DanceEvent

TheaterEvent

UserInteraction

LiteraryEvent
homeLocation

alumniOf

knows

workLocation

brand

director

worksFor

colleagues

affiliation

itemOffered

employees

alumni

events

performerIn

nationality

manufacturer

relatedTo

producer

spouse

parents

illustrator

memberOf

performers

superEvent

musicGroupMember

subEvents

siblings

children

attendees

actors

follows

editor

founders

