
Advanced OWL 2.0 Ontology Visualization
in OWLGrEd

Kārlis ČERĀNS*, Jūlija OVČIŅŅIKOVA *, Renārs LIEPIŅŠ† and Artūrs SPROĢIS†

Institute of Mathematics and Computer Science, University of Latvia
Raiņa bulvāris 29, Riga LV-1459, Latvia

{Karlis.Cerans, Julija.Ovcinnikova, Renars.Liepins, Arturs.Sprogis}@lumii.lv

Abstract. Intuitive ontology visualization is a key for their learning, exchange, as
well as their usage in conceptual modeling and semantic database schema design.
OWLGrEd is a visual tool for compact graphical UML-style rendering and editing
of OWL 2.0 ontologies. We describe here the extensibility features for OWLGrEd
that allow tailoring the editor for specific ontology-based modeling needs,
including custom entity annotation visualizations and description of integrity
constraints for semantic database schemas. We discuss the application of concrete
OWLGrEd extensions in the context of ontology-centered information system
engineering.

Keywords. OWL, UML/OWL profile, OWLGrEd, graphical ontology visuali-
zation, semantic databases, integrity constraints, semantic information systems

Introduction

The semantic technologies, based on RDF [1], RDFS [2] and OWL [3,4] data formats,
among the others, offer new perspectives for data organization, management and
integration on the basis data conceptual structure that is either explicitly formulated
(e.g. in the case of new data designs), or is yet to be recovered via the data semantic re-
engineering process. The concept of Semantic Web [5] and, for instance, the publicly
available Linked Open Data [6] collection demonstrate the use of semantic
technologies on the web scale; these technologies are of not less potential also for
enterprise scale where large volumes of heterogeneous and interconnected information
has been collected and is intensively used.

The use of RDF/OWL as the backbone of data integration and management
infrastructure becomes possible due to a combination of factors such as high-level
conceptual modeling constructs, formal semantics and effective reasoning support (cf.
e.g. Pellet [7], Fact++ [8] and Hermit [9] reasoners), as well as efficient data stores
supporting RDF and OWL data management (see e.g. Virtuoso [10], AllegroGraph
[11] and OWLIM [12]). There is a new development of Stardog OWL/RDF database
environment [13] that includes use of integrity constraints together with traditionally
“open-world” OWL specifications, making it particularly well suited for use in
semantic information systems.

A key component in ontology-based information infrastructure is a intuitive
ontology presentation and editing notation that allows presenting the existing and well-

* Partially supported by European Union via European Regional Development Fund project

2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.
† Partially supported by Latvian 2010.-2013. National Research Program Nr.2 project Nr.5.

thought OWL/RDF modeling constructs to the end user. A number of tools and
approaches exist for rendering and/or editing OWL ontologies in a graphical form,
including UML Profile for OWL DL [14], ODM [15], TopBraid Composer [16],
Protégé [17] plug-in OWLViz [18], OWLGrEd [19,20]. Most of these approaches (cf.
at least [14,15,19,20]) use some variant or extension of UML class diagrams [21,22] to
visualize OWL ontologies. Although there is no one-to-one correspondence between all
OWL ontology and UML class diagram concepts, the attempts to adapt UML notation
also to OWL ontology management is quite understandable due to the well-thought
basis and widespread distribution of UML notation. The benefits of graphical UML-
style presentation of ontologies have been observed also in the conceptual study of
“Semantic Latvia” information infrastructure [23] and its applications to the semantic
data re-engineering task in the medical domain [24,25].

Although the UML-style class diagram notation for basic OWL constructs can be
successfully used in OWL ontology rendering and authoring, the use of OWL
ontologies in semantic database and information system structure definition introduce
the need for further customized or “domain-specific” notations for OWL ontology
presentations. Since one of the primary design goals of OWL has been to obtain a
decidable logical language, there are rather limited possibilities to introduce extensions
into the “logical” part of OWL. There is, however, a rather important construct of
annotations in OWL 2.0 [4] that may carry substantial model contents as well as model
management information that just does not fit into the “logical” part of the OWL
ontology. Our proposal in this paper is to come up with a structural means for defining
custom / domain specific ontology annotation assertion visualizations based on specific
textual presentations and graphical effects (e.g. diagram symbol appearance change).
We base our presentation on the example of OWLGrEd ontology editor, for which we
have developed the ontology annotation visual configuration means; however, there
should be no principle obstacles to alternative implementations of the notations we are
proposing. Some of the principles underlying this work have been already sketched as
[26], however, here we are able to present a much detailed design of our ideas, as well
as report on an implemented system and give concrete usage examples.

We illustrate our approach by examples of (i) defining “annotation semantics” for
advanced UML constructs, such as composition or property derived union (note that
these constructs do not have direct counterparts in OWL), (ii) defining database
connectivity annotation fields for OWL classes, object and data properties, based on
RDB2OWL mapping language for relational database to RDF/OWL format mappings,
and (iii) devising notation for entity and axiom level annotations, allowing to
incorporate integrity constraints [27,28] that are semantically important in semantic
database schema design and that make the extended OWLGrEd editor well suited for
schema management in StarDog database environment [13].

1. OWLGrEd Notation and Editor

OWLGrEd3 provides a complete graphical notation for OWL 2 [4], based on UML
class diagrams. It follows the basic principle in UML-style visualization of OWL to
visualize an independent hierarchy of ontology classes and then structure the data and
object property visualizations along the property domain and range classes.

3 http://owlgred.lumii.lv/

OWLGrEd visualizes OWL classes as UML classes, OWL object properties as
association roles and OWL data properties as attributes, as well as OWL individuals as
objects4. This design decision allows also for easy graphical visualization also of
subclass assertions in form of UML generalization (we make use also of UML
generalization sets to encode the disjointness or completeness assertions on the
subclasses), simple cardinality constraints and inverse-of relations. There is however
the need to offer suitable graphical representations also for further OWL ontology
constructions (e.g. class expressions, properties with more than one domain assertion,
sub-property relations etc.). The design choice of OWLGrEd ontology editor is to use
textual OWL Manchester syntax [29] for class expressions where the graphical notation
is not available or is not desired.

More precisely, we enrich the UML class diagrams with the new extension
notations (cf. [19,20]):

• fields in classes for equivalent class, superclass and disjoint class expressions
written in Manchester OWL syntax;

• fields in associations and attributes for equivalent, disjoint and super
properties and fields for property characteristics, e.g., functional, transitive, etc.;

• anonymous classes containing equivalent class expression but no name (we
show graphically only those anonymous classes that need to have graphic represen-
tation in order to be able to describe other ontology concepts in the diagram);

• connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms;
• boxes with connectors for n-ary disjoint, equivalent, etc. axioms;
• connectors (lines) for visualizing object property restrictions some, only,

exactly, as well as cardinality restrictions.
OWLGrEd provides option to specify class expressions in compact textual form

rather than using separate graphical element for each logical item within class
expression. If an expression is referenced in multiple places, it can optionally be shown
as an anonymous class. An anonymous class is also used as a base for property
domain/range specification, if this domain/range is not a named class.

Figure 1 contains a variant of mini-University ontology, shown in OWLGrEd
notation: there are disjoint Person, AcademicProgram and Course classes with their
respective subclasses, where the Teacher class is specified to be the disjoint union of
Professor, AssociateProfessor and Assistant classes. The object properties (e.g.
enrolled, belongsTo, includes, relates, and teaches are ascribed as roles on associations
containing their respective domain and range classes. The sub-property relation is
depicted using “<” notation, e.g. the SubProperty(takes relates) axiom is depicted by
{<relates} compartment associated with the takes property description.

For the notation illustration purpose we have included two depiction forms for
axioms EquivalentClasses(AcademicStaff Teacher) – the graphical <<equivalent>>
symbol and the =Teacher text in a compartment for AcademicStaff class, – and
SubClassOf(PermanentTeachingStaff ObjectSomeValuesFrom(teaches
MandatoryCourse)) – the textual form in PermanentTeachingStaff class, as well as the
red restriction line towards MandatoryCourse class symbol. We illustrate also the
standard notation for annotations (the comments in the example) that is available in
OWLGrEd.

4 We note that an implementation is underway also for an alternative OWL individual

visualization in the list form (this may be essential e.g. for enumerated classes)

AcademicProgram
programName:string{<name}

Person
"All persons, including teachers
and students"
key = personID
personName:string{<name}
personID:string[0..1]

{disjoint}

Professor
<salary some
integer [>10000]

<<Comment>>
"All persons,
including teachers
and students"

Thing{owl}
name:string{func}

Assistant

AssociateProfessor
<<equivalent>>

<<Comment>>
/ for relates
"An abstract property"

{disjoint}
{complete}

Teacher
salary:integer Student

AcademicStaff
=Teacher

PermanentTeachingStaff
<teaches some
MandatoryCourse

Course
courseName:
string{<name}

MandatoryCourse
<isTaught by only (Professor or
(PermanentTeachingStaff and
salary some integer [> 8000]))

belongsTo 1

includes

teaches {<relates} {<>takes}

isTaughtBy

teaches some [1..*]

enrolled {>takes o
belongsTo}

takes {<relates} 1..10isTakenBy

passed {<takes}

relates

<<disjoint>>

Fig. 1. Example: OWLGrEd notation for a mini-University ontology

We note that the data property name that has sub-properties personName,
programName and courseName at Person, AcademicProgram and Course classes
respectively. A typical UML-style design might have used here the same attribute name
at all these classes, however, in the case of OWL semantics that would correspond to
the domain of name being intersection of the classes (not as intended). The single
placement of name property at owl:Thing class provides also a place in the editor for
recording its characteristics (e.g. a functional property), annotations and relations to
other entities in the ontology.

The OWGrEd editor offers read/write functionality for OWL Functional syntax [4],
as well as ontology interoperability (import/export) functionality with Protégé 4.1.
ontology editor [17]. The principal OWLGrEd usage tool chains are:

- ontology authoring (create and edit an ontology in OWLGrEd, then save or
export it to Protégé and possibly further on to other ontology processing tools)

- ontology visualization (an ontology that is imported from Protégé is displayed
graphically to obtain a comprehensible visual view on it); we note also the
availability of ontology fragment visualization tools in OWLGrEd.

Any combination of these two OWLGrEd usage patterns, including ontology
round-trip engineering between OWLGrEd and Protégé, are possible, as well.

We note that the OWLGrEd editor is implemented within TDA environment [30],
on the basis of its Graph Diagram Engine [31], Tool Definition Framework [32] and
User Dialogue Engine [33]; the TDA environment itself as well as all its frameworks
and engines use data structures formed as MOF-style [34] meta-models that provide for
easy configuration means, as well as for extension programming in high level model
transformation languages.

2. Custom Ontology Visualizations: The Concepts

Custom ontology visualizations in OWLGrEd ontology editor are defined by means of
ontology visualization profiles. Each ontology visualization profile consists of a set of
visual item (= abstract field) specifications, where each field comprises:

(i) field type (e.g. textual/boolean(= check box)/combo box field)
(ii) field appearance (e.g. visibility and text font style)
(iii) visual effects on ontology diagram symbols and other fields (e.g. symbol color

and shape)
(iv) field semantics (what OWL axioms (e.g. annotation assertions) or axiom

annotations a value in the field corresponds to).
For an ontology to be visualized in OWLGrEd in a custom way, the corresponding

ontology visualization profile has to be created or imported using OWLGrEd
visualization profile plug-in. When ontology created in such domain-specific extension
of OWLGrEd is saved in OWL Functional syntax notation or exported to Protégé
ontology editor, the ontology diagram node and edge fields that correspond to profile
visual items generate the OWL axioms or axiom annotations, as specified in field
semantics description.

We recall following [4] that OWL 2 provides both built-in annotation properties
(e.g. rdfs:Label and rdfs:Comment for common rdfs namespace, and a number of
others), as well as a mechanism for user-defined annotation property introduction
(some examples of user defined annotation properties are A:DBExpr, A:isImportant,
A:isComposition and A:isDerivedUnion in the example below in Figure 2). An
annotation property can be intuitively thought of as a “type” of individual annotations
that ascribe a value to an ontology entity (e.g. an OWL class, object property or data
property); these individual annotations relating the annotation property, the annotated
OWL entity and the annotation value are called in OWL “annotation assertions”.
Another use of annotation properties is in annotating not the OWL entities but rather
the axioms themselves forming the OWL ontology (we use the term “axiom
annotation” in this case).

The most common custom ontology visualization pattern consists in ascribing the
specific graphical presentations to the OWL built-in or user-defined annotation
properties, with the understanding that the graphical presentation is applied to the
ontology entity whenever the entity is annotated by an annotation with the
corresponding property5.

Consider, for example, an ontology A fragment that is visualized in a custom way,
as in Figure 2. The graphical notation, if compared to the “basic” OWLGrEd ontology
editor, has the following “custom” user fields:

- a new class field “DB” rendered textually with prefix “ {DB:” and suffix “}”,
- a class field “isImportant” whose value “true” is rendered as orange background

and 3D shape of the class symbol,
- association role sub-field “isComposition” whose value “true” is rendered as

diamond symbol on opposite association end, and
- association role sub-field “isDerivedUnion” whose value “true” is rendered as

prefix “/” to the association role name field.

5 We note that there can be other axiom patterns that are attached to visual item

specifications, for instance, all directly specified sub-classes of some pre-defined class
can be marked as red.

 We desire to have these fields correspond to the following axioms:
AnnotationAssertion(A:DBExpr A:AcademicProgram "XProgram")
AnnotationAssertion(A:DBExpr A:Course "XCourse")
AnnotationAssertion(A:isImportant A:Teacher "true")
AnnotationAssertion(A:isComposition A:includes "true")
AnnotationAssertion(A:isDerivedUnion A:relates "true")

This is achieved by the following semantics declarations, where each declaration

contains a pattern for the generation of OWL 2 Functional Syntax axioms on the basis
of the concrete field value (the $value pattern) and the context (e.g. the diagram
element) where the field is placed (the $subject pattern):

- AnnotationAssertion(:DBExpr $subject $value) for the field “DB”,
- AnnotationAssertion(:isImportant $subject "true") for the value “true” in the

boolean-typed field “isImportant”,
- AnnotationAssertion(:isComposition $subject "true") for the value “true” in

“isComposition”, and
- AnnotationAssertion(:isDerivedUnion $subject "true") for the value “true” in

“isDerivedUnion”.
When an ontology that uses the A:isImportant, A:DBExpr and A:isComposition

annotations (or other OWL built-in or user defined annotations whose visual image is
foreseen in a loaded ontology visualization profile) is imported into OWLGrEd with
ontology visualization profile pre-loaded, the editor is able to create the custom
visualization (like Figure 2) automatically.

We note that we have demonstrated assigning “annotation semantics” to two
typical UML constructs, namely composition and property derived union that are not
available within the “logical part” of OWL (the notion of composition does not fit well
within the OWL notation framework; the property derived union stating, that a property
does not have other subject-to-object relation pairs, than its sub-properties, is not
included in the OWL “logics” due to the need to have a decidable reasoning support).

3. Ontology Visualization Profile Specification

In this section we explain in more detail the ontology visualization profile and abstract
field concepts outlined in Section 2.

The basic structure and available functionality of the ontology visualization profile
is characterized by the meta-model in Figure 3. The core classes of the meta-model are:

• AA#Profile – the profile itself,
• AA#Field – visual item, understood as visible or invisible diagram element

field to be added to the basic editor notation,

Course
courseName:string
{DB: XCourse}

TeacherAcademicProgram
programName:string
{DB: XProgram}

Person

belongsTo includes teaches
{<relates}

isTaughtBy

/relates

Fig. 2. Simple custom ontology annotation visualization

• AA#ChoiceItem – an item within a fixed drop-down list associated to a field;
there can be choice items in both Boolean and textual fields; their typical use
is to activate style settings for elements they are placed in, as well as for fields
therein, and

• AA#StyleSetting – a “style effect” specification either for a newly introduced
field itself, or for another diagram item (element, field) on the basis of related
choice item or view selection.

Some important additional classes are:
• AA#ContextType – the context of the new field in the editor (linked from the

field by fieldContext link), i.e. the type of the element (e.g. a class node, or
association line) and the place within the element’s field structure (e.g. – a top
level place in a class box, or a top level place within the association’s role
description), where the new field is to be added to;

• AA#Tag – the tags for special processing of field or choice item values (tags
can be ascribed also to visualization profiles themselves); for the custom
ontology visualization in OWLGrEd the tags (in their tagPattern attribute)
contain the field and choice item semantics declarations for ontology import
from/export to Protégé ontology editor;

• AA#View – a collection of style settings that can be applied both to the
standard editor fields and to the ones introduced by the profile; an example
use of views is to enable showing/hiding the custom field information in the
ontology diagram, moreover, any functionality exposed by style settings can
be induced also by views over any element or field type in the diagram (the
combination of choice item and view conditions for style settings is possible,
as well).

The AA#Configuration and AA#TagType classes are meant to help the visualization
profile designer by pre-defining the context and tag types that can be used to structure
the visual profile definition environment (e.g. by providing tag labels and available
context type structure). The AA#Translet class allows attaching specific procedures for
handling the fields during their processing within editor’s property dialogues.

We note that the hasMirror/addMirror notation e.g. in AA#ContextType and
AA#ViewStyleSetting classes is also meant to ease the work of visualization profile
designer by allowing specifying the custom fields and style effects for only one of
symmetric line ends (e.g. the association ends) in the editor.

AA#ContextType
nr:integer
contextTypeName:string
elementTypeName:string
path:s tring
mode:string
hasMirror:boolean

AA#Profile
name:string

AA#Field
name:string
rowTypeName:string
defaultValue:string
prefix:s tring
suffix:string
delimiter:s tring
pattern:string
isStereotypeField:boolean
displayPlaceBefore:string
propertyEditorTab:string
propertyEditorPlaceBefore:string

AA#ChoiceItem
caption:string
notation:s tring

AA#Translet
procedure:s tring
trans letTaskName:string

AA#Tag
tagKey:string
tagPattern:s tring

<<Comment>>
"rowTypeName
expected to be one
of:
-TextBox
-CheckBox
-ComboBox
-ListBox
-MultiLineTextBox
-Empty"

<<Comment>>
"taskName expected one of:
-procGenerateItemsClickBox
-procStartValue
-procFieldEntered
-procCompose
-procDecompose"

AA#StyleSetting
value:s tring
target:string
isElementStyleSetting:boolean
path:s tring

AA#CompartStyleItem
itemName:string
itemType:string
forNodeCompart:boolean
forEdgeCompart:boolean
forAttribCompart:boolean
isRealStyleItem:boolean
extraContents:s tring

AA#ElemStyleItem
itemName:string
itemType:string
styleItemMode:string("{Node,Edge,Any}")

AA#FieldStyleSetting

AA#ViewStyleSetting
elementTypeName:string
addMirror:boolean
sourceCompartTypeName:string
sourceChoiceItemName:string

AA#View
name:string
isDefault:boolean

AA#Configuration AA#TagType
key:s tring
notation:string

AA#ProfileItem

profileField
*

1

superField 1

subField {<ordered} *

choiceItem
{<ordered}
*

translet
*

dependsOn *

dependent
*

tag
*

base

fieldInContext
{<ordered}
*

fieldContext 1

selfStyleSetting *
styleSetting *

choiceItem

*elemStyleFeature 0..1

profileView

viewStyleSetting
*

1

profile *

configuration 1

1

context
*

tagType *1

tagType
*

profile
*

fieldStyleFeature 0..1 *

Fig. 3. Visualization profile meta-model

We add some further explanations on AA#Field and AA#StyleSetting classes in the
visualization profile meta-model.

The rowTypeName attribute of AA#Field indicates the type of the field (visual
item) to be added to the diagram elements; we note sub-fields are allowed to TextBox
and MultiLineTextBox fields only, while choice items may correspond only to
CheckBox, ComboBox and ListBox type fields.

The field structure specification in AA#Field class determines both the fields’
placement within the graphical diagram representation (the displayPlaceBefore
attribute) and within the corresponding element’s property dialogue within the editor
(the propertyEditorTab and propertyEditorPlaceBefore attributes). The choice to offer
in the field attributes defaultValue, prefix, suffix (relating the field value in the editor
and in the graphical presentation), delimiter (for multi-line fields) and pattern (the
symbols allowed in the field) in the visualization profile meta-model is related to the
TDA Tool Definition Framework [32] implementation of these attributes.

The isStereotype attribute for AA#Field marks the field as “stereotype”, with the
meaning that its choice items are allowed to have dependent fields (the fields that are
present in the element only if there is a corresponding choice item activated); the
stereotype fields, however, are not allowed to be dependent fields themselves. We note
that this construction allows simulating of UML stereotype tagged values.

The style settings in AA#StyleSetting class describe the “style effects” brought to
the editor by the instance of the visualization profile. Each style setting has the
following components:

- the source – a new field added to the diagram element (the field self-setting), a
choice item to be activated, or a view applied to the diagram;

- the target (the target attribute in AA#StyleSetting class) element or field to be
affected by the style setting;

- the style item – what style component (e.g. box shape, color, line strength, or
field font face, size, etc.) is to be affected;
the available “real” style items are defined by TDA Graph Diagram Engine [31],
and are reproduced also here in Figure 4; furthermore there are “style items” for
textual target fields that allow adding an extra prefix or suffix to the field (the
concrete prefix/suffix is specified in the extraContents attribute of
AA#CompartStyleItem class);

- the value the concrete style item is to assume (there are different possible value
sets for different style items).

Fig. 4. Element and field style settings in TDA Graph Diagram Engine (reproduced from [31])

We note that the diagram visualization profile mechanism is implemented as a
plug-in to OWLGrEd editor6, and it allows defining, importing and exporting profiles,
each profile consisting of field definition set, as well as defining graphical views and
applying these to the diagrams (a view may change appearance for certain box, line and
field types, including an option of hiding certain field types from a diagram).

6 See the current version at http://owlgred.lumii.lv/plugin/CustomUserFields/

4. Ontology Visualization Profile Use Cases

We demonstrate the use of the developed notation and technology on the concrete
examples arising in the context of semantic database engineering. The possibility to
define “annotation semantics” for typical UML constructs such as composition and
property derived union has been demonstrated already in Section 2. Here we proceed
to examples of database connectivity notation and integrity constraint modeling.

4.1. Database Connectivity Notation for OWL Ontologies

The creation of semantic information infrastructure includes the need to populate it
from the existing (legacy) data that are typically stored in the form of relational
databases. The task of semantic re-engineering of relational database data involves
specification of mappings from the relational database to RDF/OWL format. The
custom OWL ontology visualization format allows for creation of simple visualization
profile e.g. for ontology entity annotations by RDB2OWL expressions [35,36] that
document the relation of OWL ontology entities to their data counterparts in the
relational databases7.

Figure 5 contains a re-engineering of mini-University ontology with RDB2OWL
annotations using OWLGrEd with DBExpr-ontology visualization profile (observe a
similar figure in [35]).

The implementation of the profile is achieved by adding multi-line DBExpr-fields
with semantics tags AnnotationAssertion(owlFields:DBExpr $subject $value):

- to the Class symbol,
- as a subfield to Association role field
- as a subfield to Attribute field within the class symbol.

AssociateProfessor
{DB: [[Teacher]],Level='
AssocProf'}

Person
personName:string{DB: [[Teacher]].TName}
{DB: [[Student]].SName}

Course
courseName:string{DB: CName}
{DB: XCourse}

Teacher
{DB: XTeacher}

Thing{owl}

{disjoint}

AcademicProgram
programName:s tring{DB: PName}
{DB: XProgram}

{disjoint}
{complete}

OptionalCourse
{DB: [[Course]],
isRequired=0}

MandatoryCourse
<isTaughtBy only Professor
{DB: [[Cours e]], isRequired=1}

{disjoint}

{complete}

Student
{DB: XStudent}

Assistant
{DB: [[Teacher]],
Level='Ass is tant'}

PersonID
IDValue:string{DB: [[T]].IDCode}{DB: [[S]].IDCode}
{DB: T=XTeacher {uri=('PersonID',IDCode)}}}{DB: S
=XStudent {uri=('PersonID',IDCode)}}}

Professor
{DB: [[Teacher]],
Level='Professor'}

isTaughtBy

teaches {<>takes }
{DB:=>}

enrolled
{DB:->}

person 0..1
personID{DB:[[Teacher]][AutoID->[[T]]}

{DB:[[Student]][AutoID->[[S]]}

isTakenBy takes

{<>teaches}
{DB:=>XRegis tration->}

belongsTo {DB:->}

includes

Fig. 5. RDB2OWL database connectivity assertion visualization

7 We refer the reader to [27] for discussion of different RDB-to-RDF/OWL mapping

formalisms of which RDB2OWL is an option; our primary aim here is to illustrate the
applicability of our ontology visualization technology.

Some of the annotation assertions, generated from DBExpr-annotations during the
ontology export from OWLGrEd to Protégé are, as follows:

AnnotationAssertion(owlFields:DBExpr :AcademicProgram "XProgram")

AnnotationAssertion(owlFields:DBExpr :Assistant "[[Teacher]],Level='Assistant'")

AnnotationAssertion(owlFields:DBExpr :AssociateProfessor "[[Teacher]],Level='AssocProf'")

AnnotationAssertion(owlFields:DBExpr :Course "XCourse")

AnnotationAssertion(owlFields:DBExpr :courseName "CName")

AnnotationAssertion(owlFields:DBExpr :enrolled "->")

AnnotationAssertion(owlFields:DBExpr :IDValue "[[S]].IDCode")

AnnotationAssertion(owlFields:DBExpr :IDValue "[[T]].IDCode")

AnnotationAssertion(owlFields:DBExpr :MandatoryCourse "[[Course]], isRequired=1")

AnnotationAssertion(owlFields:DBExpr :OptionalCourse "[[Course]],isRequired=0")

AnnotationAssertion(owlFields:DBExpr :personID "[[Student]][AutoID->[[S]]")

AnnotationAssertion(owlFields:DBExpr :personID "[[Teacher]][AutoID->[[T]]")

AnnotationAssertion(owlFields:DBExpr :PersonID "S=XStudent {uri=('PersonID',IDCode)}}")

AnnotationAssertion(owlFields:DBExpr :PersonID "T=XTeacher {uri=('PersonID',IDCode)}}")

AnnotationAssertion(owlFields:DBExpr :personName "[[Student]].SName")

AnnotationAssertion(owlFields:DBExpr :personName "[[Teacher]].TName")

AnnotationAssertion(owlFields:DBExpr :Professor "[[Teacher]],Level='Professor'")

AnnotationAssertion(owlFields:DBExpr :programName "PName")

AnnotationAssertion(owlFields:DBExpr :Student "XStudent")

AnnotationAssertion(owlFields:DBExpr :takes "=>XRegistration->")

AnnotationAssertion(owlFields:DBExpr :Teacher "XTeacher")

AnnotationAssertion(owlFields:DBExpr :teaches "=>")

4.2. Integrity Constraints in RDF/OWL Database Schema Design

The use of standard OWL “open-world assumption” semantics [37] may in certain
cases of semantic database schema specification produce un-intended results. For
instance, in the case of ontology of Figure 1:

- if a teacher X who is not a professor (e.g. an assistant) has registered by an error
as taking (takes) a course, instead of teaching (teaches) it, the system infers that
X is a student since only students are allowed to take a course;

- if a course belongs to two academic programs (with no names specified yet),
these would be inferred to be the same academic program;

- if there is a student not taking any course, the system will not regard this as a
problem, since the course might not yet be specified;

- if a professor has a recorded salary of 9500, the system would infer that there is
also another salary for the professor that is > 10000.

The integrity constraints (the OWL ontology statements interpreted in “closed
world” sense and not used in the OWL inference but are just checked, if they are
satisfied by the present data) [27,28] are nowadays commonly invoked to handle these
situations, supported also by the StarDog database environment8 .

We do not go into details of integrity constraint specification alternatives but just
present an ontology visualization profile9 for OWLGrEd that that foresees a possibility
to attach an (i)/(c)-mark (“i” for inference, “c” for constraint) to visual places that can
be identified as “holding” the concrete axioms, as in Figure 6 for mini-University.

8 http://stardog.com/
9 The extended editor is available as OWLGrEd/S from http://owlgred.lumii.lv/s

PermanentTeachingStaff
<teaches some MandatoryCourse

Assistant

AcademicStaff
=(i) Teacher

<<(i) equivalent>>
Teacher

salary:integer

<<Comment>>
"All persons,
including teachers
and students"

Student

{(i) disjoint}

Professor
<(c) salary some
integer [>10000]

{(i) disjoint}

AcademicProgram
(c) programName:string{<(i) name}Person

"All persons, including teachers and
students"
personName:string{<name}
personID:string[0..1]

MandatoryCourse
<isTaught by only (Professor or
(PermanentTeachingStaff and salary some
integer [> 8000]))

Thing{owl}
name/i/:(c) string{(c) func}

Course
courseName:string{<name}

passed
{<(c) takes}

i

i

<<(i) disjoint>>
i

c teaches some [1..*]

i

i

enrolled
(c)1

{>(c) takes o belongsTo}

belongsTo (c)1

includes

c
teaches
{<(i) relates}
{<>takes}

isTaughtBy

c
takes
{<(i) relates}
{<>(i) teaches}
(c)1..(c)10

isTakenBy

i

relates/i/

Fig. 6. Integrity constraint specification for mini-University ontology

Some positions for (i)/(c)-markings in the extended editor are, as follows:
- object property line start and end positions, reflecting domain and range

assertions for the property (e.g. property teaches or takes in Figure 6);
- data property name prefix, reflecting data property domain assertion;
- equivalent classes, disjoint classes and superclasses assertions within class

nodes (e.g. assertion < salary some integer [>10000] in Professor class); in a
similar way the notation is extended also to equivalent, disjoint and super-
properties (e.g. <(i)name assertion for personName property in Person class)

- property chain assertions
- object and data property characteristics (e.g. {(c)func} for name in class Thing)
- cardinality restrictions (e.g. (c)1..(c)10 cardinality for takes)
- generalization lines (SubClassOf-markers) in the graphical form (e.g. for

subclasses of Thing, Person and Teacher classes)
- disjoint/complete assertions placed at generalization set descriptors (forks), e.g.

the fork joining subclasses of Teacher class.

In the example, for instance, the axiom ObjectPropertyDomain(A:takes A:Student)
is annotated to become ObjectPropertyDomain(Annotation(C:isConstraint “true”)
A:takes A:Student) for a suitable namespace C holding the isConstraint annotation
property. The visual c-notation placed at the beginning of takes-role link is obtained
from a “DomainMode” field under the association role takes. The corresponding
semantics specification for the “DomainMode” field causing the considered
ObjectPropertyDomain-axiom annotation is Annotation(C:isConstraint “true”).

5. Conclusions

The presentation and examples considered here outline the potential of custom
ontology visualization profiles in OWLGrEd, as well as their importance in the

situation of data structure specification for semantic information systems. There should
be no principal problems to use the developed framework also for annotations to be
added to OWL for specifying user interface form generation on the basis of the OWL
ontology structure, or different kinds of integrity constraints specification (e.g. the ones
written in SPARQL [38] language).

The reader is invited also to come up with specific notation for his/her own
favorite or custom OWL annotation properties.

Given the generic nature of the diagram visualization profiles it would not be
difficult to apply the constructs developed here also to other editors created within the
TDA + TDMM environment (see e.g. [39]). We note also that style setting on style
attribute level has been done here for the first time for the TDA environment.

Due to the open and model-based structure of the TDA environment [30] and its
Tool Definition Framework [32] where the OWLGrEd editor is implemented in, there
has been a possibility to implement the ontology visualization profile mechanism
(including profile configuration form description) by MDA-style high level model
transformations, written in LuA library lQuery [40].

References

[1] Resource Description Framework (RDF), http://www.w3.org/RDF/
[2] RDF Vocabulary Description Language: RDF Schema, http://www.w3.org/TR/rdf-schema/
[3] Smith, M. K.; Welty, C.; and McGuiness, D.: OWL Web Ontology Language Guide, 2004
[4] Motik, B; Patel-Schneider P.F; Parsia B.: OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax, 2009
[5] Tim Berners-Lee, James Hendler and Ora Lassila, "The Semantic Web", Scientific American, May 2001,

p. 29-37.
[6] Linked Data, http://linkeddata.org
[7] Pellet, reasoner http://clarkparsia.com/pellet
[8] FaCT++, reasoner, http://owl.man.ac.uk/factplusplus/
[9] Hermit OWL Reasoner, http://hermit-reasoner.com/
[10] http://virtuoso.openlinksw.com/
[11] AllegroGraph, http://www.franz.com/agraph/allegrograph/
[12] OWLIM, http://www.ontotext.com/owlim
[13] StarDog, http://stardog.com
[14] Brockmans, S., Volz, R., Eberhart, A., Löffler, P. Visual Modeling of OWL DL Ontologies Using

UML, Proc. of ISWC 2004, LNCS 3298, pp. 198-213, 2004.
[15] ODM UML profile for OWL, http://www.omg.org/spec/ODM/1.0/PDF/
[16] TopBraid Composer, http://www.topquadrant.com/products/TB_Composer.html.
[17] Protégé 4, http://protege.stanford.edu/
[18] OWL Viz, http://www.co-ode.org/downloads/owlviz/
[19] Barzdins, J.; Barzdins, G.; Cerans, K.; Liepins, R.; Sprogis, A.: OWLGrEd: a UML Style Graphical

Notation and Editor for OWL 2. In Proc. of OWLED 2010, 2010.
[20] Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A.: UML Style Graphical Notation and Editor for OWL 2.

In Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, p. 102-113, 2010.
[21] Unified Modeling Language: Infrastructure, version 2.1. OMG Specification ptc/06-04-03,

http://www.omg.org/docs/ptc/06-04-03.pdf
[22] Unified Modeling Language: Superstructure, version 2.1. OMG Specification ptc/06-04-02,

http://www.omg.org/docs/ptc/06-04-02.pdf
[23] J.Barzdins, G.Barzdins, R.Balodis, K.Cerans, et.al.: (2006). Towards Semantic Latvia. In

Communications of 7th International Baltic Conference on Databases and Information Systems,
pp.203-218.

[24] G.Barzdins, E.Liepins, M.Veilande, M.Zviedris: Semantic Latvia Approach in the Medical Domain.
Proc. 8th International Baltic Conference on Databases and Information Systems. H.M.Haav, A.Kalja
(eds.) Tallinn University of Technology Press, pp. 89-102. (2008).

[25] G.Barzdins, S.Rikacovs, M.Veilande, and M.Zviedris: Ontological Re-engineering of Medical
Databases, Proceedings of the Latvian Academy of Sciences. Section B, Vol. 63 (2009), No. 4/5
(663/664), pp. 20–30.

[26] Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A.: Advanced ontology visualization with OWLGrEd. In
Proc. of OWLED 2011, 2011.

[27] Tao, J.; Sirin, E.; Bao J; McGuinness, D.: Integrity Constraints in OWL. In Proc. of AAAI 2010, 2010.
[28] Sirin, E; Smith, M; Vallace, E: Opening, Closing Worlds – On Integrity Constraints. In Proc. of

OWLED 2008, 2008.
[29] OWL 2 Manchester Syntax, http://www.w3.org/TR/owl2-manchester-syntax/
[30] Barzdins J., Rencis E., and Kozlovics S. The Transformation-Driven Architecture, Proc. of 8th

OOPSLA Workshop on Domain-Specific Modeling. Nashville, USA, 2008, pp.60-63.
[31] Barzdins J., Cerans K., Kozlovics S., Rencis E., and Zarins, A. A Graph Diagram Engine for the

Transformation-Driven Architecture, Proc. of 4th International Workshop of Model-Driven
Development of Advanced User Interfaces, Florida, USA, 2009, pp.29-32.

[32] J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis, A. Zarins. An MDE-
based Graphical Tool Building Framework. In Scientific Papers, University of Latvia, 2010, Vol 756,
ISSN 1407-2157, pp. 121-138

[33] S. Kozlovics, A Dialog Engine Metamodel for the Transformation-Driven Architecture. . In Scientific
Papers, University of Latvia, 2010, Vol 756, ISSN 1407-2157, pp. 151-170

[34] OMG's MetaObject Facility, http://www.omg.org/mof/
[35] K.Čerāns, G.Būmans, RDB2OWL: a RDB-to-RDF/OWL Mapping Specification Language //

J.Barzdins and M.Kirikova (eds.), Databases and Information Systems VI, IOS Press 2011, p.139-152.
[36] G.Būmans, K.Čerāns, Advanced RDB-to-RDF/OWL mapping facilities in RDB2OWL // Proc. of BIR

2011, Riga, Latvia, October 7-8, 2011. LNBIP 90, pp. 142-157. Springer, Heidelberg, 2011 (ISBN:978-
3-642-24510-7

[37] Motik, B.; Patel-Schneider, P. F.; and Grau, B. C.: OWL 2 Web Ontology Language Direct Semantics,
2009

[38] SPARQL 1.1 Query Language, http://www.w3.org/TR/2010/WD-sparql11-query-20100601/
[39] J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics, L. Lace, R.Liepins, E. Rencis, A.

Sprogis, A. Zarins. Domain Specific Languages for Business Process Management: a Case Study.
Proceedings of DSM’09 Workshop of OOPSLA 2009, Orlando, Florida, USA, pp. 34 – 40, 2009.

[40] R. Liepiņš. Library for model querying – lQuery. In Proceedings of Workshop on OCL and Textual
Modelling, 2012.

