
Extensible Visualizations of Ontologies in OWLGrEd

Kārlis Čerāns, Jūlija Ovčiņņikova, Renārs Liepiņš, Mikus Grasmanis

{karlis.cerans, julija.ovcinnikova, renars.liepins, mikus.grasmanis}@lumii.lv
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

Abstract. OWLGrEd is a visual editor for OWL 2.0 ontologies that combines
UML class diagram notation and textual OWL Manchester syntax for expres-
sions. We review the basic OWLGrEd options for ontology presentation custom-
ization and consider the framework of OWLGrEd extensions that enables intro-
ducing rich use-case specific functionality to the editor. A number of available
OWLGrEd extensions offering rich ontology management features to their end-
users are described, as well.

Keywords: OWL, OWLGrEd, custom ontology visualization

1 Introduction

Presenting OWL ontologies [1] in a comprehensible form is vital for ontology designers
and their users alike. Several approaches and tools, including OWLViz [2], VOWL [3],
OntoDia [4], ODM [5], TopBraid Composer [6] and OWLGrEd [7] have been devel-
oped to present the ontologies visually so that ontologically related constructs are linked
together in the presentation (e.g. an object property can be depicted as a line connecting
its domain and range classes, or a sub-class can be linked to its super-class). A recent
extensive and in-depth overview of the ontology visualization methods and tools is [8].

The OWLGrEd ontology editor1 [7] stands out in the ontology visualization tools
family by combining the ontology visualization and editing facilities. So, an ontology
or its fragment can be adjusted after its initial automatic visualization, or an ontology
can be even created from scratch within the editor and then saved into some standard
textual serialization format. We describe here the options for and experience with cus-
tom/extended ontology presentation in OWLGrEd. These can be viewed also as an in-
itial response to the call for “ontology visualization framework implementing a core set
of visual and interactive features that can be extended and customized” in [8].

The OWLGrEd notation [7] comprising extended UML class diagrams [9] combined
with OWL Manchester syntax [10] for textual expression encoding allows to express
all OWL 2.0 [1] ontology constructs. Should an ontology be used as a data model within
some context, it may be convenient to store an important part of the model contents
within the ontology entity annotations. To facilitate custom handling of designated an-
notation properties, ontology visualization profiles extending the diagram element

1 http://owlgred.lumii.lv/

structure have been introduced to OWLGrEd in [11], cf. also [12]; the sharing and de-
velopment of the profiles is described here for the first time.

The practical usage of visualization profiles in custom-annotated ontology engineer-
ing has shown that it is convenient to consider such a profile within a context of a more
“heavy-weight” ontology editor extension (an editor “plugin” in terms of [13]) which,
besides the profile itself, may contain programmable editor functionality extensions.

We shall describe in the paper and show in the demonstration the following:
1) Review of the OWLGrEd notation and its basic options for presentation tuning,
2) The list of available existing and novel OWLGrEd extensions together with the

instructions how to install an extension into a users’ OWLGrEd project, and
3) The means (advanced) to create new extensions for OWLGrEd editor (extension

architecture, custom fields and views, outline of the programmable data model).

2 Basic Tuning of Presentation in OWLGrEd

Figure 1 shows an OWL ontology example in the OWLGrEd notation, we refer to e.g.
[7,13] or the OWLGrEd home page for its more detailed explanation.

Fig. 1. A simple mini-University ontology in OWLGrEd

The UML notation [9] allows for presenting a property either graphically as an as-
sociation role, or textually as an attribute. OWLGrEd supports alternative visual ways
of the same semantic construct expressing for properties and restrictions, as well as e.g.
for subclass, equivalent classes and disjoint classes notation. A line connecting two
classes shows visually their connectivity, while the textual form may be preferable to
reduce the graph overloading with lines, or eventually may enable splitting a large con-
nected graph into separate fragments. The RefactoringServices extension (cf. Section
3) provides built-in ontology presentation re-shaping services.

There are options to configure the inclusion and initial shaping (e.g. visual or textual)
of ontology constructs in the ontology diagram created during the ontology loading
(import) phase by means of ontology import parameters, as described in [13].

There are two options to change the presentation style (including visibility) of an
element present in an ontology diagram. The “shallow” (ad-hoc) option is provided by
the GRTP platform [14] the OWLGrEd editor is built upon and is available on a per-
symbol basis (e.g. it is possible to change the color of a diagram element). The struc-
ture-based definition of the presentation style (e.g. make all superclass-to-subclass lines
the left-to-right flow lines) is also available in the default OWLGrEd configuration (cf.
the “Style palette” context menu option and toolbar icon).

<<dis joint>> OptionalCourse

{dis joint}

Teacher
salary:(decimal[> 0])

teacherName:string{<personName}

Course
courseName:string

courseCredits:integer

courseCode:string

Thing{owl}

{disjoint}

{complete}

{dis joint}

Assistant Professor

Person
personID:string

personName:string

Student
studentName:string{

<personName}

studentNumber:string

MandatoryCourse
<isTaugthBy only ProfessorisTaughtBy only

teaches {<>takes}isTaughtBy

takes {<>teaches}

3 OWLGrEd Extensions

An OWLGrEd extension can add custom (domain-specific) data structures and func-
tionality to the editor. The principal components of an OWLGrEd extension are:

1) custom information fields for ontology diagram symbols, each with possible
visual appearance and/or semantics (e.g. annotation assertion) specification, and

2) high-level programmable functionality extensions (tied e.g. to context menu or
palette elements, or to explicit extension points in the existing procedures).

In addition, ontology presentation views [11] can be specified within each
OWLGrEd extension; a view can define the style (including visibility) of visual element
types, with an option for conditionally applied styles based on data field values.

Any user of the OWLGrEd editor can download extensions e.g. from the Extensions
section of the OWLGrEd home page; then add them (de-compressed first) to the project
via “Extensions” context menu command within a project diagram.

The currently available extensions include:
1) OWLGrEd_UserFields, historically the first extension [11], part of default

OWLGrEd configuration, providing the basic mechanisms of both creation and
run-time support for custom information fields and ontology presentation views;

2) RefactoringServices, supports transformations among ontology element visual
presentation options (e.g. an object property presentation can be switched be-
tween the graphical and textual form); the transformations are added to the con-
text menus of the ontology diagram elements to be transformed;

3) OWLGrEd_Schema, a novel (work in progress) extension supports assertions
of a property applicability within a given class context; the property domain is
then computed as the union of all classes for which the property is applicable
(cf. Fig.2);

4) OWLGrEd_OBIS, supports the annotation framework [15] for automated on-
tology-based information system generation [16]. Parts of it have been also re-
factored into separate extensions, including UML_Plus (introduction of UML-
style elements for modeling notation: a composition, an enumerated class, an
abstract class and a derived property) and DefaultOrder (recording of attribute
ordering information within a class node).

5) OWLCNL_LanguageFields, an experimental framework for adding verbal
forms to ontology entities to enable contextual verbalization of ontologies [17].

The OWLGrEd extensions currently are actively developed further and applied in
practical use cases. For instance, for the ontology development for the existing (legacy)
data structure of the Latvian Enterprise Registry registers the UML_Plus,
OWLGrEd_Schema and RefactoringServices custom extensions have been important2.

Fig. 2. Outline of property applicability assertions: visual form and OWL Functional Syntax

2 An image of the ontology is available at owlgred.lumii.lv/success_stories#ur

A1
+p:integer

A2
+p:integer

B "ObjectPropertyDomain(:q ObjectUnionOf(:A1 :A2))

DataPropertyDomain(:p ObjectUnionOf(:A1 :A2))

SubClassOf(:A1 ObjectAllValuesFrom(:q :B))

SubClassOf(:A1 DataAllValuesFrom(:p xsd:integer))

SubClassOf(:A2 ObjectAllValuesFrom(:q :B))

SubClassOf(:A2 DataAllValuesFrom(:p xsd:integer))"

+q
+q

4 Create Your Own Extension

An OWLGrEd extension is a data folder that can be added to a project by placing it
under the Plugins sub-folder within the projects’ folder and then re-opening the project.
The principal elements of the contents of an OWLGrEd extension folder are:

1) info.lua – a text file stating the extensions’ identifier, name and version;
2) load.lua – the code to be executed upon installing the extension (e.g. introducing

the custom fields, and other editor configuration updates);
3) unload.lua – the code to be executed upon uninstalling the extension;
4) other data and functionality information, referred to from the loading and un-

loading programs, including the code to be attached to e.g. newly created menu
and toolbar items, or pre-defined extension points within the editor code.

The OWLGrEd editor is built upon the GRTP platform [14], whose data model is
best described in [18] and augmented by the custom fields part in [11]. The “live” data
model diagram is available also from within the editor itself under the Show->Meta-

model global menu item. The programming environment is based on Lua programming
language and uses library lQuery [19] for data model management. Examples of load-
ing and unloading transformations can be seen e.g. in the code of UML_Plus extension.

The definitions of custom fields are typically stored in textual form within exten-
sion’s AutoLoad sub-folder and must be loaded by the code in load.lua. The custom
field definition file can be created using the OWLGrEd style palette environment (to
be opened from the project diagram): under ‘Manage views and profiles’ select ‘New

profile’, give it a name, add custom fields (views can be added, as well), then save the
profile. The abstract profile structure follows [11]; the OWLGrEd style palette allows
to “fill in” the instances of the profile metamodel.

Each custom field is defined within editor structure context (a field can be ascribed
to e.g. a class, a role or an attribute) and can have basic appearance properties, func-
tional translets and semantic tags defined. A semantic tag typically is a template for
OWL Functional Syntax [1] assertion associated with the field, as, for example, Anno-

tationAssertion(obis:textPattern $subject $value) in OWLGrEd_OBIS extension is,
where the $subject and $value variables refer to the context and the contents of the field
respectively. The semantic tags and style effects can be attached to the choice items of
check-box or drop-down type editor fields, as well.

5 Conclusions

OWLGrEd offers a wide range of customization options for presentation of an ontology
loaded or created within the editor.

The OWLGrEd editor extensions are playing a major role in supporting ontology
development and custom presentation in use cases that typically come up with their
own requirements for extra add-on functionality to the standard editor features.

The source code of the OWLGrEd extensions is included within OWLGrEd distri-
bution (their code is interpreted during the run-time, so any changes to it are effective
immediately) and is free to be amended, modified and used (as is OWLGrEd itself).

The OWLGrEd extension architecture is suitable also for eventual migration into the
web environment, as is envisaged for the OWLGrEd editor itself; it admits the user role
separation allowing the system administrators to define and install the extensions, while
letting the end-users to choose which extensions to activate within a project.

References

1. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax (2009)

2. OWLViz, http://www.co-ode.org/downloads/owlviz/
3. Lohmann, S., Negru, S., Haag F., Ertl, T.: Visualizing Ontologies with VOWL. Semantic

Web 7(4), 399-419 (2016)
4. Mouromtsev, D., Pavlov, D., Emelyanov, Y., Morozov, A., Razdyakonov, D. & Galkin, M.

The simple, web-based tool for visualization and sharing of semantic data and ontologies.
In: ISWC P&D 2015, CEUR, vol.1486, http://ceur-ws.org/Vol-1486/paper_77.pdf (2015)

5. ODM UML profile for OWL, http://www.omg.org/spec/ODM/1.0/PDF/
6. TopBraid Composer.

http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/.
7. Bārzdiņš, J., Čerāns, K., Liepiņš, R., Sproģis, A.: UML Style Graphical Notation and Editor

for OWL 2. In: Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, pp. 102-113 (2010)
8. Dudáš, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods and tools:

a survey of the state of the art. The Knowledge Engineering Review, 33, (2018)
9. Unified Modeling Language Specification, https://www.omg.org/spec/UML/2.5

10. OWL 2 Manchester Syntax, http://www.w3.org/TR/owl2-manchester-syntax/
11. Čerāns, K., Ovčiņņikova, J., Liepiņš, R., Sproģis, A.: Advanced OWL 2.0 Ontology Visu-

alization in OWLGrEd. In: Caplinskas, A., Dzemyda, G., Lupeikiene, A., Vasilecas, O.
(eds.), Databases and Information Systems VII, IOS Press, Frontiers in Artificial Intelli-
gence and Applications, Vol 249, pp.41-54 (2013)

12. Čerāns, K., Liepiņš, R., Sproģis, A., Ovčiņņikova, J., Bārzdiņš, G.: Domain-Specific OWL
Ontology Visualization with OWLGrEd. In: ESWC 2012 Satellite Events, Springer LNCS,
pp. 419-424 (2012)

13. Ovčiņņikova, J., Čerāns, K.: Advanced UML Style Visualization of OWL Ontologies. In:
Proc. of VOILA 2016. CEUR, vol. 1704, CEUR-WS.org, 2016, pp.136-142 (2016)

14. Bārzdiņš, J., Zariņš, A., Čerāns, K., Kalniņš, A., Rencis, E., Lāce, L., Liepiņš, R., Sproģis,
A.: GrTP: Transformation Based Graphical Tool Building Platform. In: Proc. of MDDAUI-
2007, CEUR, vol. 297, http://ceur-ws.org/Vol-297/paper6.pdf, (2007).

15. Čerāns, K., Romāne. A.: OBIS: Ontology-Based Information System Framework. In: Proc.
CAiSE FORUM 2015, CEUR vol.1367, http://ceur-ws.org/Vol-1367/paper-09.pdf (2015)

16. Zviedris, M., Romāne, A., Bārzdiņš, G., Čerāns, K.: Ontology-Based Information System.
In: Proc. of JIST’2013, Springer LNCS, Vol. 8388, pp.33-47 (2014).

17. Liepiņš, R., Bojārs, U., Grūzitis N., Čerāns, K., Celms, E.: Towards Self-explanatory On-
tology Visualization with Contextual Verbalization. In: Arnicans, G., Arnicane, V., Borzovs,
J., Niedrite, L. (eds.), DBIS, Springer, CCIS, Vol 615, pp.3-17 (2016)

18. Bārzdiņš, J., Čerāns, K., Kozlovics, S., Lace, L., Liepiņš, R., Rencis, E., Sproģis, A., Zariņš,
A.: An MDE-based Graphical Tool Building Framework. In Scientific Papers, University of
Latvia, 2010, Vol 756, pp.121-138 (2010)

19. Liepiņš, R.: Library for model querying: lQuery. In Proceedings of Workshop on OCL and
Textual Modelling, pp.31-36 (2012)

